

GITM Results for the 17 March 2013 Storm: Challenges in estimating IT energy budget

IEMIT-MMV joint session for ionospheric conductance challenge

Dogacan Su Ozturk¹, Xing Meng¹, Olga Verkhoglyadova¹

1: Jet Propulsion Laboratory, California Institute of Technology

Verkhoglyadova, O. P., X. Meng, A. J. Manucci, M. G. Mlynczak, L. A. Hunt, G. Lu (2017), Ionosphere-thermosphere energy budgets for the ICME storms of March 2013 and 2015 estimated with GITM and observational proxies, Space Weather, 15, doi:10.1002/2017SW001650 contact: dogacan.s.ozturk@jpl.nasa.gov

Challenges in estimating I-T Energy Budget

$$Q_{JH} = \sigma_P [\mathbf{E} + u_n \times \mathbf{B}]^2$$

Major challenge: Estimating/Measuring four parameters at the same time

from an I-T modeling perspective

1. Including neutral dynamics:

- Thayer and Vickrey, 1992 showed the importance of neutral wind dynamo in M-I coupling.
- Lu et al. [1995], showed neutral winds had a %28 negative effect on Q_{JH}.
- Deng and Ridley [2007], showed %20
 enhancement in energy deposition through Q_{JH}
 with GITM where neutral winds are accounted for.
- Zhu and Ridley (2015) implemented ion-neutral collisional heating to GITM further improving Q_{JH} modeling.

2. Consistency between electric fields and particle precipitation:

 The empirical models for particle precipitation and convection patterns are developed separately from different data sets.

Simulation Setup

- Modeling of the storm through Global Ionosphere Thermosphere Model (GITM)¹
- Drivers for Ionospheric Electrodynamics (1-min):
 - 1. Weimer 2005² model for high-latitude ionospheric potentials
 - 2. OVATION Prime³ for auroral particle precipitation
- Grid resolution: 3. 3° in longitude, 1° latitude, 1/3 local scale height in vertical direction, ~1s temporal resolution

- 1. 0600 UT: Storm onset, SI+
- 2. 1200 UT: Storm main phase-I
- 3. 1900 UT: Storm main phase-II
- 4. 2100 UT: Storm recovery

1 Ridley et al., 2006 2 Weimer, 2005

3 Newell et al., 2009

Potential Patterns vs Electric Field Profiles

 $E = -\nabla \Phi$

 Electric fields in the dusk sector are stronger.

 High-latitude dawn electric fields are stronger in 1st and 3rd snapshots.

Electric Field vs Height-Integrated Joule Heating Profiles

Electric field magnitude and height-integrated Joule heating profiles do not show a strong correlation.

Electric Field vs Height-Integrated Auroral Heating Profiles

The nightside boundary of the dusk electric fields weakens as the auroral oval expands.

Conclusions and Future work

Conclusions:

- Consideration of I-T dynamics changes the location and magnitude of Joule Heating.
- A self-consistent treatment of particle precipitation and electrodynamics is important for a complete understanding of M-I-T coupling

Future work:

- We are developing a framework that can utilize high-latitude local (meso-scale) 2D electric field measurements as input to run a global I-T model.
- We aim to include such a self-consistent treatment of drivers in our modeling approach to understand I-T energy budget better.

jpl.nasa.gov